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Motion of a vortex near a free surface? 
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The early motion of a single vortex suddenly placed near a free surface is studied 
analytically. The general initial/boundary-value problem is solved in terms of a 
Taylor expansion in time. The vortex position and the surface elevation are 
determined to third order. We find a precise distinction between subcritical (weak) 
and supercritical (strong) vortices. All vortices start with retrograde horizontal 
motion. After a short time, subcritical vortices tend to turn and continue their 
motion in the prograde direction. Supercritical vortices cannot turn, but will 
continue their retrograde motion. They will accumulate a surface mound until 
surface breaking eventually occurs. 

1. Introduction 
Two-dimensional inviscid flow has the distinctive feature that vorticity is 

conserved for each fluid particle (Helmholtz’s theorem). This fundamental relation 
follows immediately from the curl of Euler’s equation of motion. It means that 
vortex stretching, being a fundamental mechanism in turbulence, cannot exist in 
strictly two-dimensional flow. 

Basic implications of Helmholtz’s theorem for vortices near a free surface still 
remain to be investigated. In the present work we consider the simplest possible case; 
the vorticity is zero everywhere except for one singular vortex. Helmholtz’s theorem 
is only relevant if the vortex is free; not forced by any exterior agency. A forced 
vortex is a relevant model for the far field of a moving submerged body with 
circulation. If the motion of the body is prescribed, the vortex velocity is given a 
priori, completely independent of Helmholtz’s theorem. Some basic work has been 
done by Salvesen & von Kerczek (1976), who studied numerically the free-surface 
flow due to a single vortex in forced horizontal motion with constant velocity. 

We assume the semi-infinite fluid to be undisturbed except for a single vortex, 
which is suddenly placed in the fluid at time zero. Within the theory of inviscid flow, 
this can only be achieved if our single vortex is generated impulsively as a starting 
vortex, shed from a body with circulation prescribed by the Kutta condition. We will 
neglect all influence from the impulsively started body on the free-surface flow. This 
is only possible if we consider an extremely slender two-dimensional foil, which starts 
impulsively to more vertically with constant velocity, from a position at rest close to 
the free surface. Provided the angle of attack is extremely small and the impulsive 
velocity very large, the foil leaves no signature on the free-surface flow, except for its 
shed vortex. Owing to Kelvin’s theorem of the conservation of circulation (Batchelor 
1967, p. 273), the circulation of the free vortex has the same magnitude (but opposite 
sign) as the circulation of the submerged foil in its steady vertical motion. 

t With an Appendix by R. P. Tong. 
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The present nonlinear problem has never been studied theoretically. f Just  recently, 
several investigations have been done on a closely related problem : a counter- 
rotating vortex pair which is generated impulsively and moves vertically with a 
nonlinear interaction with the free surface. The vortex-pair problem has been 
investigated experimentally and numerically by Willmarth et al. (1989), numerically 
by Telste (1989) and Marcus & Berger (1989) and analytically by Tyvand (1990a). 
Earlier work in this field is more restricted: either the free-surface condition is 
linearized (Novikov 1981), or the surface is treated as a rigid lid (Lamb 1932, p. 223; 
Sarpkaya & Henderson 1984). 

The technique of power series expansion in time for free-surface flows has been 
applied in particular to  singular wavemaker problems (Peregrine 1972 ; Greenhow & 
Lin 1983). Although the series is asymptotic with zero radius of convergence, it is 
suited to a basic classification of single free vortices near a free surface: we find a 
precise distinction between subcritical and supercritical vortices. A similar 
distinction will not exist for a vortex pair (Tyvand 1990a), so the cases of one and 
two vortices are fundamentally different. 

The present analysis also gives an asymptotic expression for the leading gravity 
wave radiated out from the vortex a t  small times. Tyvand (1990b) applied the 
present method to  a strong source which is turned on below a free surface. It 
produces a leading wave of the classical Cauchy-Poisson type (Lamb 1932, p. 385), 
but with a smoother start than in the cases of initial impulse or initial surface hump. 
The leading gravity wave from a vortex will tend more rapidly to  zero in the far field 
than that from a source. 

If viscosity is taken into account, there are several possibilities for generating an 
isolated vortex with axis parallel to a free surface. An example is the vortex shedding 
due to the roll motion of a ship. If the Reynolds number of such a vortex is large 
enough, the present model is relevant for its early time evolution. One basic problem 
is the importance of wave radiation out from the vortex region. A related question 
is how large is the surface elevation that can be accumulated before surface breaking 
occurs '1 The present study tends to  support the conclusion by Telste (1989) : a vortex 
near a free surface will never send out much wave energy. Either the vortex is too 
weak to  be able to deform the surface significantly, or surface breaking occurs 
quickly. 

2. Mathematical formulation 
We comider an inviscid semi-infinite fluid ihitially a t  rest in the gravity field. A 

horizontal line vortex with circulation r is put impulsively into the fluid a t  time t = 
0. Positive circulation is defined in the counta-clockwise direction. The initial depth 
of submergence below the free surface is denoted by D. The gravitational acceleration 
is denoted by g. 

The fluid is at rest for t < 0. The submerged vortex is free and moves with the fluid 
velocity according to Helmholtz's theorem. A Cartesian coordinate system is defined, 
with x-axis in the undisturbed free surface and y-axis vertically upwards. We define 
x = 0 by the initial location of the vortex. 

We introduce dimensionless quantities by defining D as unit of length, r / D  as unit 

t Note added in proof: Recently this problem has been studied numerically by Yu & 
Tryggvason ( 1990). 
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of velocity, and D 2 / r  as unit of time. We have one characteristic dimensionless 
number ; the Froude number defined by 

F = r / (gD3) i ,  (2.1) 
The dimensionless velocity potential is denoted by @(x, y, t ) .  The vortex location is 
given by x = X ( t )  and y = - Y(t) .  The dimensionless surface elevation is denoted by 
r ( x ,  t ) .  

The initial/boundary-value problem may be expressed as follows : 
V2@ = 0 in the fluid except for the vortex point (X, -Y), (2.2) 

Ivq +o, y + - 00, (2-3) 

a@ 
-++IV@12+Pq at = 0, y = q(x ,  t ) ,  

@(z, 0,O) = 0, (2.6) 

(2.7 1 q ( x ,  0 )  = 0. 
Condition (2.6) is derived by integrating Bernoulli’s equation (2.5) over the extremely 
short time interval of impulse start. This is in accordance with Wehausen & Laitone 
(1960, equation 13.54). The above equations (2.3)-(2.7) are identical with the 
equations solved numerically by Telste (1989). 

3. Taylor expansion in time 

to introduce the Taylor expansion : 

(3.1) 
By this approach we extrapolate the behaviour for later time from the information 
which is available at t = 0. Our results are exact, but the asymptotic series is 
restricted in validity to a short time interval. In contrast, the numerical results for 
a long-time simulation of the full nonlinear equations must be filtered to suppress 
instabilities (Telste 1989). The Taylor expansion in time was suggested for nonlinear 
free-surface problems by Peregrine (1972). He applied it to the free-surface flow due 
to an impulsively started wavemaker, see also Greenhow & Lin (1983). 

For a thorough investigation of the behaviour for small values of time, it is useful 

( @ , q , - x  Y )  = ( @ o , ~ o , ~ l ) ,  &)+t(@, ,q1 ,X, ,  Y,)+t2(@2,q2,X2, & ) + . . a .  

By definition we have xo=o,  & = l ,  q o = o .  
To find the higher-order vortex coordinates, Helmholtz’s theorem must be applied 
most carefully. We will come back to that in the next section. 

We will now define the boundary-value problem to each order in the time 
ekpansion. This is done by differentiating the full problem (2.2)-(2.7) as many times 
as necessary, and putting t = 0. However, we must be careful to take into account 
the total time dependence, which implicitly includes the y-coordinate through the 
surface elevation. That is, the partial time derivatives alone cannot describe the full 
time variation. All boundary-value problems will now be defined for the undisturbed 
fluid domain y < 0. The field equations are 

except for the point (2, y) = (X, - Y ) ,  expanded to order tn .  

V 2 @ , = 0 ,  y < O ,  n = 0 , 1 , 2  ,... (3.3) 
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The far-field conditions are 

IV@,I+O, y + - m ,  n = 0 ,1 ,2 ,  ... . (3.4) 

The first three free-surface conditions are 

Qo = 0, y = 0, (3.5) 

(3.7) 

The leading gravity term enters the problem to second order. Because of the minus 
second power of the Froude number, i t  is clear that the time interval for which the 
asymptotic series is valid shrinks rapidly with decreasing F. However, we do not put 
any lower limit on the Froude number. This is because we are always interested in 
the behaviour during the time interval where the series expansion is valid, no matter 
how short i t  is. 

The higher-order boundary-value problems also involve an equation defining the 
surface elevation to  each order. The first three are as follows: 

(3.9) 

The fact that the leading gravitational contribution enters the surface elevation to 
third order shows that our choice of dimensionless quantities provides the proper 
scaling for the problem. 

4. On Helmholtz’s theorem and the vortex potential 
Helmholtz’s theorem says that the singular vortex is convected with the non- 

singular contribution to  the total flow field at the vortex location. We need to  clarify 
its application. Let us therefore summarize (3.3)-(3.7), and include Helmholtz’s 
theorem : 

V2@, = 0, ( 4 . 1 ~ )  
P@,I + 0, y+ - 0,  (4.1 b )  
@,(x, 0) = f n ( 4 ,  ( 4 . 1 ~ )  
(n+ 1) (X,,,, - Y,+l) = the nth-order contribution to the expansion of 

y < 0 except for the point (2, y) = (X, -Y) ,  

[(!-,$) (non-singular part of @ ) l ( x , - y )  . (4.ld) 1 
These equations are valid for n = 0 ,1 ,2 ,  ... . The functions f,(x) introduced in ( 4 . 1 ~ )  
have already been defined in (3.5)-(3.7), for n = 0, 1 and 2. 
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Although the full problem is nonlinear, the expansion (3.1) gives us a sequence of 
formally linear equations, with the non-linear terms treated as known inhomo- 
geneities to each order. So it is possible to apply the principle of superposition for 
Laplace’s equation. In this connection it is very important to note that the expansion 
(3.1) involves a simultaneous extrapolation of the free surface and the vortex location 
from t = 0: so in the full final expansions the free surface is taken as y = 0 and the 
vortex position as (2, y) = (0, - 1). 

First we choose to separate out the singularity of the vortex from the 
inhomogeneities at  the boundary y = 0. By the principle of superposition we then 

(4-2) 
write : 

Here $ is the singular vortex potential which takes into account the full vortex 
singularity, with homogeneous boundary conditions ; $ is a regular (non-singular) 
potential which accounts for all inhomogeneous boundary conditions a t  y = 0. 

@ = $+$, to each order (n). 

Let us first write the non-expanded version of the vortex potential: 

y+Y 1 Y-Y arctan - +- arctan - 1 
2n x-x 27c x-X‘ 

$.=- (4.3) 

We thus satisfy the required boundary condition $ = 0 at y = 0 by adding a negative 
(corotating) image vortex in the point (X, Y) outside the fluid domain. The explicit 
expansion of (4.3) can only be done successively, one order at  a time. Even though 
the vortex is moving, it produces an instantaneous flow field which is the same as if 
the vortex had been at rest. Therefore we can state this general expression for the 
vortex field without knowing the motion of the vortex. But in order to expand this 
vortex potential in time we need to know the vortex motion. 

The vortex potential now enters the problem in two ways. (i) By its spatial 
derivatives to each order in the free surface conditions (3.5)-(3.10). (ii) The non- 
singular part of its gradient contributes to the vortex motion according to 
Helmholtz’s theorem. This is given by 

Non-singular part of (4.4) 

We note that only Y but not X to each order will contribute to the vortex motion 
through the vortex potential. 

By combining (4.ld), (4.3) and (4.4) we now arrive at an explicit vector formulation 
of Helmholtz’s theorem to order n :  

+nth-order term in the expansion of (ay, - 0). (4.5) 

This equation is recursive, in that the vortex coordinate Y, must be known (from 
Helmholtz’s theorem to order n- 1) before Helmholtz’s theorem to the order rz can 
be given quantitatively. 

In order to apply (4.5), it is necessary to solve the nth order boundary-value 
problem for the regular potential (n = 0, 1,2 , .  . .) : 

VZ$, = 0, y c 0’ ( 4 . 6 ~ )  
IV$nl+O, Y+--co, (4.6b) 

$n(x ,  0 )  =fn(x)- ( 4 . 6 ~ )  
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These boundary-value problems for the regular potential involve the following y- 
derivative of the vortex potential : 

1 x - x  
- ( 5 , O )  = - 
a Y  7c(z-X)2+ y2 

(4- 7 ) 

expanded to each order. This expansion must also be done successively. 

order vortex motion from the zeroth-order contribution t,o (4.1) : 
As the zeroth-order regular potential is zero, we can immediately find the zeroth- 

a$ 1 w o  x - -2 (0, - 1) = -, r, = - (0, - 1 )  = 0. 
l -  ax 4n: aY (4.8) 

(Some confusion may arise because the vortex motion is of lower order than the 
vortex position, the former being the derivative of the latter.) We can also take a step 
further by combining (3.2) and (4.8) and introduce a two-term expansion for Y into 
(4.4). As the second term in this expansion is zero, the result will be: 

Non-singular part of V$,(O, - 1 )  = 0. (4.9) 
We already know the zeroth- and first-order contributions to (4.7) by invoking 

(3.2), (3.8) and (4.8): 
X 9% (x, 0) = v,(x) = a Y  7c(x2+ 1) ’ 

Vl x2- 1 
- (x, 0) = 
a Y  4n:2(x2+ 1 ) 2 ’  

(4.10) 

(4.11) 

Equation (4.1 1) is valid only for free vortices, following Helmholtz’s theorem. A more 
general version of this equation is the following: 

X,(x2-1)-2Y1x 
- (x, 0) = a Y  n:(x2+1)2 . (4.12) 

Equation (4.12) is also valid for a forced vortex, with X, and & given a priori. It is 
worth noting that a forced vertical motion of a vortex will produce an antisymmetric 
contribution to the second-order surface elevation. 

Equation (4.10) gives the total first-order surface elevation. It has extremal values 
a t  1x1 = 1. A simple geometrical argument explains why this is so: a single vortex (as 
well as its corotating image) induces extremal free-surface velocity a t  points where 
the position vector makes an angle of 45” with the vertical direction. 

5. On the regular potential and the total flow 

Poisson’s integral formula for a half-plane (Morse & Feshbach 1953, p. 371) : 
All higher orders of the regular potential may now be given analytically by 

This integral is evaluated in each case by residue calculus. We are interested in two 
properties of these regular potentials: (i) the normal derivative at the boundary, 
which contributes to the surface elevation ; (ii) the gradient at the point (x, y) = (0, 
- l),  which contributes to  the vortex motion, by Helmholtz’s theorem (4.5). 
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We first solve the first-order regular potential and find 

This is the same as twice the second-order surface elevation that would have resulted 
from a static vortex. It arises from the nonlinear convective acceleration, and would 
have been absent if we had linearized the Bernoulli equation (2.5). Equation (3.9) 
shows that half the sum of (4.11) and (5.2) defines the total second-order surface 
elevation : 

The second-order elevation is negative for 1x1 < 4 3  and positive for 1x1 > 4 3 .  
We now calculate the gradient of the first-order potential at  the vortex location: 

Vq5,(0, - 1) = 0. (5.4) 
Owing to symmetry, it is obvious that the horizontal component is zero, but it is 
surprising that the vertical component is also zero. By Helmholtz’s theorem we add 
together (4.9) and (5.4) to get 

To second-order the vortex will then move in a straight line with constant velocity, 
just as to first order. 

We will now study the second-order potential and the third-order surface 
elevation. These are the leading orders to which gravity effects enter the problem, 
through the Froude number. In the dimensionless initial/boundary-value problem 
the Froude number is the only parameter which measures the vortex strength 
relative to depth of submergence and gravity. 

Because of the extremely complicated nonlinear terms in (3.10) we will not find the 
general third-order elevation, but only its gravity-dependent part : 

X = - 
37P(x2 + 1)2 ’ 

which has extremal values at 1x1 = 5 4 3  = 0.5774. Here we note a sign difference 
compared with the first-order elevation. This has the physical explanation that the 
radiation of gravity waves reduces the amplitudes of the surface crest and trough 
around 1x1 = 1. The leading gravity waves are defined as the asymptotic limits of (5.6) 
as 1x1 +a. 

We have calculated the gradient of the second-order regular potential at the 
vortex location : 

It is obvious that the vertical component is zero because of symmetry. Invoking (5.5) 
we find from Helmholtz’s theorem (4.5): 
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Here the contribution from the vortex potential is zero. Equation (5.8) defines the 
second-order vortex velocity components. 

6. Subcritical versus supercritical vortices 
The sign of the third-order vortex position is very important because it determines 

whether the vortex will go on moving to the right, or turn and go back. This gives an 
exact definition of critical vortex strength, which can only be achieved analytically. 
The Froude number F, for a vortex of critical strength is defined by X, = 0, which 
by (5.8) leads to 

F, = 27t. (6.1) 
Strictly speaking, the Froude number F ,  (2.1) ,  must be defined a t  the initial instant, 
as the effective depth will change during the motion. The vortex always starts to 
move into a region with positive surface elevation, and thereby digs itself more 
deeply into the surrounding fluid. Although the vortex moves strictly horizontally to 
our calculated order, it will increase its effective depth. It might make sense to say 
that the effective Froude number is reduced during the early motion, but we will not 
pursue this further. 

As criterion (6 .1)  is exact, it  suggests the definition of an alternative Froude 
number k (all quantities dimensional) : 

I‘/(27tD) - V 
27c(gD3)k - (gD); c ’ 

_ -  - r F =  

Let us define the concept of the ‘touching circle ’ : it  is a circle with its centre at the 
vortex location, with radius D .  So the undisturbed free surface is tangent to the 
touching circle. In  (6.2), V denotes the velocity induced by the vortex (not its image) 
at  the perimeter of the touching circle. Alternatively, V is twice the initial velocity 
of the vortex. Furthermore, c denotes the phase velocity for the ‘characteristic water 
wave ’ associated with the vortex. This is either a hydrostatic shallow-water wave in 
a canal with depth D or, alternatively, a linear deep-water wave with wavelength 
equal to the perimeter of the touching circle. The ratio V / c ,  as a final version of the 
definition (6 .2) ,  shows the analogy with the uniform free-surface flow in a canal, 
where the critical Froude number is 1. Our modified Froude number ( P )  will also 
have 1 as its critical value. 

Subcritical (weak) vortices can now be defined by 

P <  1 .  (6.3) 
According to the present theory, subcritical vortices will move in the retrograde 
direction (opposite that of water waves with the same direction of particle 
circulation) during the dimensionless time interval 

(6.4) 
then stop and move backwards, in the prograde direction, which is the ordinary 
direction of motion for a weak vortex (Lamb 1932, p. 223). However, the present 
theory will certainly be invalid outside the interval given by (6 .4) .  This interval is of 
course very small when P Q 1, where we have the asymptotic limit: 

0 < t < d 2 F .  (6.5) 
(Here the original Froude number F gives the shortest formula). In dimensional 
terms, this upper limit of (6 .5)  may be written 

0 < t < 2 7 t ( 2 / ( P -  1)); 

t ,  = dU>/(gD): .  (6.6) 
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To this order of approximation, the time it takes for a very weak vortex to turn is 
equal to the time it takes for a body in free fall to cover the distance D, starting from 
rest. This is the same as the time it takes for the characteristic water wave to travel 
a distance equal to 4 2  times the initial depth of submergence. So, even though our 
theory is then limited to very small times, it gives essential information about the 
early motion. But we cannot predict the evolution towards Lamb’s solution for 
larger times. We just note that the magnitude of the large-time prograde velocity is 
the same as that of the initial retrograde velocity. 

We can never expect the present theory to make sense for dimensionless times 
exceeding 1. This means that for Froude numbers ( F )  between 1 (say) and the critical 
value 6.28, we cannot rely on our series expansion when it predicts that the vortex 
will turn and reverse its motion. We still know that the initial retrograde motion has 
to be retarded, but surface breaking may occur before a reversing of the motion has 
been reached. 

We can study several other interesting physical features of very weak vortices. Let 
us ask the question : What is the size of a circle in which the particle rotates exactly 
one turn by the time a very weak vortex has reversed its motion ? The circumference 
of such a circle (around the vortex) is 

(42~);  (assuming P 4 1) 

with D as length unit. We also want to know how far a very weak vortex has 
travelled in the retrograde direction by the time it turns. The answer is 

By that time it has produced a dimensionless surface elevation given by 

?Imax = 42P + O(P2).  (6.8) 

This surface crest, which is three times the maximal retrograde displacement of the 
weak vortex, is given solely by the first-order elevation. This result may be extended 
to stronger vortices, leading to the conclusion that the highest surface elevation 
predicted by this analytical theory will be of order lo-’. 

Supercritical (strong) vortices can now be defined by 

P >  1. (6.9) 

Not much can be said about this case, because strong nonlinear effects will dominate 
when t exceeds 1. We believe that supercritical vortices will always lead to surface 
breaking. It is highly improbable that any supercritical vortex is able to turn and 
move in the prograde direction, because its initial acceleration is in the retrograde 
direction, as shown by the present theory. Even if it  was later retarded, the surface 
would most probably break before a turn towards prograde motion could be 
completed. 

7. Summary and conclusions 
The initial free-surface flow due to a submerged horizontal vortex has been studied 

analytically by a Taylor expansion in time. The vortex is inserted into the fluid a t  
time zero, and moves with the non-singular part of the fluid velocity according to 
Helmholtz’s theorem. 
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The vortex position as a function of time is calculated to third order in the series 
expansion. To this order, the motion is purely horizontal. 

We have introduced a modified Froude number P which is the ratio between the 
induced velocity (by the single vortex) a t  the distance of the undisturbed surface, 
and the phase velocity of a characteristic water wave. The critical modified Froude 
number is shown to be equal to 1. All vortices start with retrograde motion. A 
subcritical vortex tends to turn after a certain time interval, and it will normally 
continue to  move in the prograde direction. But if its Froude number is sufficiently 
close to  the critical value, there is a possibility that surface breaking (inducing 
turbulence and dissipation of mechanical energy) will take place before the turn is 
completed, so the vortex will not be able to move in the prograde direction. The 
results suggest that  all supercritical vortices will lead to  surface breaking. 

is defined a posteriori, it is no artificial 
definition, as it is the ratio between a flow velocity and a wave velocity. Our 
distinction between subcritical and supercritical vortices is given by @ smaller than 
or greater than 1.  This criterion for a critical vortex looks deceivingly simple. So we 
should emphasize that it includes accumulated effects of nonlinear interactions a t  
two levels : (i) The interaction of the zeroth-order velocity with itself a t  the surface, 
through the squared-velocity term in Bernoulli’s equation. Alternatively, this may 
be interpreted as the interaction of the first-order surface elevation with itself. (ii) 
The interaction between the zeroth- and first-order vertical velocities a t  the free 
surface. Alternatively, this may be understood as the interaction between the first- 
and second-order surface elevations. 

Although the modified Froude number 

Appendix. The interaction of a point vortex with a free surface: numerical 
solution 

B y  R.  P. Tong 

School of Mathematics, University of Bristol, University Walk, Bristol BS8 lTW,  UK 

Equations (2.2)-(2.7) are solved numerically using the boundary integral method of 
Dold & Peregrine (1986) in the modified version described by Tanaka et al. (1987) for 
finite water depth. Using the principle of superposition for Laplace’s equation, t,he 
velocity potential @(x, y, t )  is written as 

@(x, Y ,  t )  = $r(x, y ,  t )  + $ s ( x ,  y ,  t ) ,  

where $r is a regular potential function associated with the disturbance of the free 
surface and q5s accounts for the singularity of the vortex at (X, - Y ) .  In  order to 
reduce the extent of the computational domain $s is chosen as the sum of an infinite 
series of image points, giving 

- L a r c t a n  2x (coth E ( x - X ) ]  tan E ( y - Y + g ) ] )  

in non-dimensional form. Here h is the depth and h / D  is chosen so that the effect of 
finite depth is small in order to provide a comparison with the infinite-depth solution. 
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FIGURE 1. Path of vortex at  ( X ,  - Y )  for P = 0.01. (a) -, Tyvand’s solution X ( t )  = 
0.0795%-3.3592P; x , computed solution. The continuous line close to the computed points shows 
the effect of adding 6.4t4 to Tyvand’s solution. ( b )  -, Tyvand’s solution Y = 1 ; x , computed 
solution. 

The velocity components of q5r are computed by the numerical programme as 
described in Dold & Peregrine (1986) and Tanaka et al. (1987) with the contributions 
from q5s being added at  appropriate points. The motion of the point vortex is defined 
as 

3 0  d(-Y) lim a@ -- - dX lim 
dt (z, y) --f (X, - Y) %’ dt 
_-  - 

(z, y) +. (X, - Y )  5’ 
The computation was carried out for the cases 9 = 0.01, 0.1,0.5 with h/D = 20 and 

the computed path of the point vortex is compared in figures 1-3 with the third-order 
analytic solution developed by Tyvand in the main body of this paper. For the case 

= 0.01, the numerical solution agrees closely with the analytic one until the vortex 
changes direction, and then the two solutions diverge. The difference is O(t4) and it 
was found that adding an empirically fitted t4 term to the solution of Tyvand for X ( t )  
gave a good approximation to the numerical solution (figure 1 a).  The largest errors 
in computing the motion of the point vortex come from two sources : (i) the fact that 
the integration is carried out over a finite domain ; and (ii) the effect of finite depth. 
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FIGURE 2 .  Path of vortex at ( X ,  -Y )  for = 0.1. (a) -, Tyvand's solution X ( t )  = 
0.079581-0.03326t3; x , computed solution. ( b )  -, Tyvand's solution Y = 1 ;  x , computed 
solution. 

These errors are O(iO-4) and so it appears that, for the time interval under 
consideration, the difference in the two solutions is largely due to the truncation of 
the analytic one. The comparison between analytic and numerical solutions shows 
that the third-order solution gives a good prediction of the time when the vortex 
changes direction even for the cases P = 0.1 (figure 2) and 9 = 0.5 (figure 3) when the 
series solution is not strictly valid. When P = 0.5 the surface steepens appreciably 
after the vortex changes direction and increases its depth. The computation breaks 
down as the surface moves towards breaking. 

The numerical solution thus confirms the usefulness of the third-order solution 
produced by Tyvand in describing the initial motion of a point vortex started 
impulsively beneath a free surface and in predicting the change of direction of a 
subcritical vortex. 
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FIGURE 3. Path of vortex at  (X,- Y) for @ = 0.5. (a) -, Tyvand’s solution X ( t )  = 
0.07958t-0.001P; x , computed solution. (b) -, Tyvand’s solution Y = 1; x , computed 
solution. 
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